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1 Introduction
The scope of this document is the research project on monoallelic expression in the human
dorsolateral prefrontal cortex (DLPFC); I will refer to it as the MAE project and the corre-
sponding draft as the MAE manuscript1. The term allelic exclusion will refer to mechanisms
resulting in mono or biallelic expression and imprinting will denote the parent-of-origin spe-
cific subtype of allelic exclusion. My goal here is to evaluate the current state of the this
study in order to facilitate discussion and propel this project to completion.

In the MAE project two kinds of analysis (task) was carried out:

1. classification to call monoallelic expressing genes in each individual

2. regression2 to assess the impact of explanatory variables that vary across individuals

In my understanding, the main results and conclusions may be summarized as follows:

1. relatively few genes were called strongly significant suggesting the total number of
monoallelically expressed/imprinted genes is consistent with the earlier conservative
estimate of ca. 200 [1] as opposed to the liberal estimate of ca. 1300 [2]

2. the called genes agree well but not completely with previous gene sets suggesting some
variation accross tissue types and/or organisms

3. the called genes varied across individuals; regression using 8 of the called genes suggests
loss of imprinting with age

The present evaluation finds that the first two conclusions are at best weakened by the
lack of estimated error rates of classification. The third point stands out as an interesting
but only weakly supported novel finding that calls for improvements in terms of both its
statistical significance and its generality.

Section 2 will introduce some quantities and concepts on the data and their summary
statistics used by the MAE project. In terms of those statistics, Section 3 will present some
plausible models of allelic exclusion that are both genome-wide and population-wide. These
are not considered in the MAE manuscript but I include them here to help formalize the
rather implicitly stated statistical frameworks of the MAE project in Section 4. That will

1working title: Novel monoallelically-expressed genes and relaxation of imprinting with advanced age .
See the text of manuscript under this link and the corresponding figures here

2Regression at this point means the inference of the parameters of some regression model while at some
later points it will refer to the model itself. The meaning will hopefully be clear from the context.
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pave the way for the reevaluation of the classification results in Section 5 and the regression
analysis in Section 6. In both cases suggestions will be made for reinterpretation of results
or reanalysis of data.

2 Preliminaries
Genome-wide observations on m genes were based on post mortem tissue samples from
the DLPFC (dorsolateral prefrontal cortex) of n individuals. The n × p design matrix X
contains observations on all individuals and p explanatory variables including age of death
and psychological condition (e.g. schizophrenia).

For each (addressable) gene g, and for each individual i inferred to be heterozygous for
g, a statistic Sig was used for classification resulting in the set {Sig}ig. Each Sig was derived
from the SNP-array and RNA-seq data based on read counts that contain any of the inferred
SNPs in the (i, g) pair. Let Nig be the total number of such counts (based on both alleles)
and Hig =

∑
s H

′
is, where H ′

is is the greater of the read counts for the two variants at SNP
s; the summation runs over all inferred SNPs s (for individual i and gene g). Using the
notations just introduced, the definition in the MAE manuscript reads as

Sig =
Hig

Nig
. (1)

LOI_R3 is another statistic defined by the MAE project, which was utilized in the
regression analysis. I rename it here to Ti to emphasize that each Ti is specific to individual
i. Scrutiny of some R code4 related to the MAE project revealed that Ti was defined in
terms of {Sig}g, where g is one of 8 selected genes among the previously known imprinted
genes that the classification of the MAE project called as monoallelically expressing. For
each of those genes g take the set {Sig}i across all individuals i and, based on that, let F̂g

be the empirical cumulative distribution function (e.c.d.f.) evaluated at each data point;
note the linear relation of F̂g to ranks of individuals. Then the definition based on the R
code is essentially

T ≡ {Ti}i =
1

2

(
8∑

g=1

F̂g + 1

)
(2)

In words, Eq. 2 shows that the e.c.d.f. was averaged over the 8 selected genes and after
which it was scaled to [0.5, 1] presumably in order to match the same interval as that
containing the possible values of Sig. Thus T is gene specific in the sense that it is based on
only 8 genes sharing a property (inferred imprinting) but it is also gene unspecific in that
it aggregates {Sig}ig over those genes. Due to the limited applicability of T (only to those
8 genes) I will base on {Sig}ig all statistical models described in Section 3.

There is a second reason motivated by the fact that the classification analysis of MAE
project is entirely based on {Sig}ig suggesting to consider them as sufficient statistics for
the model parameter(s) θ. This means that the complete data (from the SNP-array and
RNA-seq measurements) carry no more information on θ than {Sig}ig do, so it is sufficient
to draw inferences on θ solely from the latter (in combination with X, if X is informative).
It is likely that sufficiency does not hold but will still be assumed for consistency with the
MAE project and the assumption’s simplicity. Sufficiency will not be discussed here further.

3loss of imprinting ratio?
4I received Ifat’s code from Andy via email on 2/4/16
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3 Some plausible statistical models
I will start from the simplest model family, progressing towards generalized linear models.
Along the way I will list biological-mechanistic assumptions behind each model family, and
sketch various modeling directions to relax some of those assumptions.

3.1 The simplest model family
For all the model families considered here the following assumptions are made on the mech-
anism of allelic exclusion

• {Sig} are sufficient statistics for θ (Section 2)

• individuals are independent of each other with respect to allelic exclusion

In case of the simplest model family, {Sig}ig are independently distributed according to
two probability density functions (p.d.f.)5 f(·|a) and f(·|b), which correspond to mono and
biallelic expression, respectively:

{Sig}ig
i.i.d.∼ f(s|θg) (3)

θg =

{
a when g is monoallelically expressed
b when g is biallelically expressed.

(4)

Eq. 3 says that all Sig are distributed independently identically (i.i.d.) according to
probability distribution function f parametrized by θg whenever gene g is monoallelically
(or biallelically) expressed (Eq. 4).

For this model family the following additional assumptions must be made on allelic
exclusion:

1. it takes only two levels (resulting in fully biallelic or monoallelic expression) of the
same alleles in all cells on which the data are based on

2. with respect to allelic exclusion all genes g are independent

3. all monoallelically expressed genes are identical, and the same holds for the biallelic
case

4. explanatory variables X (including age) have no impact on allelic exclusion

3.2 Directions for generalization
When the first assumption above is relaxed to allow multiple levels of allelic exclusion within
single cells and/or variation among cells, we need a separate θG parameter for each level to
express the strength of allelic exclusion:

{Sig}ig
i.i.d.∼ f(s|θG) ∀g ∈ G.

5Mathematical rigor would require the term probability mass function because each Sig is discrete but I
use p.d.f. for technical reasons too esoteric to be exposed here. f might also be called a likelihood function.
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The difficulty with this model family is twofold. First, the biological significance of different
levels of θG seems vague. Second, the fraction of monoallelically expressed genes (genome-
wide or restricted to addressable genes) cannot be expressed by a single number as in the
two level case (see π1 in Section 5). Here I will not pursue this direction further and continue
by assuming two levels as before.

Dependence among genes (assumption 2.) is known to exist because of extensive epi-
genetic marks for imprinting that span multiple neighboring genes. The simplest model
family for such dependence is a class of hidden Markov models (HMMs). Emission prob-
abilities for θig → Sig are specified by f(s|θig) (cf. Eq. 3), and the hidden Markov chain
is θi1 → θi2 → ..., where each θig may only take the two values as in Eq. 4. Neither this
direction is followed further here and I return to the independent genes hypothesis.

3.3 Regression models
The following regression models achieve an effect that is similar to averaging. Importantly,
this model family also allows X to impact allelic exclusion (assumption 4.). The simplest
model family in this case is normal linear regression. Let f(·|µ, σ2) denote the probability
density function of the normal distribution with mean µ and variance σ2. Then for a given
individual i

{Sig}g
i.i.d.∼ f(s|xiβg, σ

2
g) (5)

βg, σ
2
g =

{
a1, a2 when g is monoallelically expressed
b1, b2 when g is biallelically expressed,

(6)

where xi is the i-th row of X and βg is a p-length vector of regression coefficients.
In this model family the multi level explanatory variables xi enter the model specifica-

tion as scaling factors of the regression parameters βg. Therefore Sig may be distributed
according to many more distributions than just two because f in Eq. 5 incorporates xi. Yet,
this model family still allows binary classification (Section 6) since X is known and, as in
Eq. 4, the unknown parameter(s) may only take two values.

Linearity and normality may not hold6 for Sig and X. Generalized linear model families
(among which normal linear models comprise just one family) may offer solutions then. In
this more general model family Eq. 5 modifies to {Sig′} i.i.d.∼ f(s|θg′(xi), φg′), such that θg′ is
a function of the explanatory variables xi, and g(E[Sig′ ]) = xiβg′ , where g is a link function
(and g′ denotes some gene).

A further generalization would be to allow direct dependence between the explanatory
variables, e.g. age of death depends on gender. This would require Bayesian networks with
the trade-off of higher model complexity.

4 The statistical frameworks of the MAE project
The MAE project based its previous classification and regression analysis on different,
though closely related, statistics: {Sig}ig (Eq. 1) and T (Eq. 2), respectively (Section 2).
Besides that, the two kinds of analysis differ in their scope, dependencies, model formulation
(or the lack of it), and consequently in parameter estimation and formal hypothesis test-
ing. These differences delineate two distinct statistical frameworks, summarized in Table 1.

6In fact they cannot hold given the finite sample space of Sig , but assuming them might be useful.
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task/analysis classification regression on explanatory vars. X
goal/question call monoall. expr. impact of X on allelic exclusion
genomic scope all (addressable) genes 8 selected monoallelic genes

statistic Sig T ≡ {Ti}i
dependencies {Sig}ig

i.i.d.∼ f(s|θ) Ti = xiβ + εi, εi
i.i.d.∼ N (0, σ2)

model family unspecified f normal linear
estimation not done β̂, σ̂2 by least squares

formal hypothesis test not done evidence for β̂age < 0

Table 1: The statistical framework of the two main tasks of the MAE project

How do these relate to the genome-wide and population-wide model families introduced in
Section 3?

All (addressable) genes in all studied individuals were classified but no statistical model
was formulated for classification. But if such a model had been given, it could have belonged
to the simple model family in Eq. 3-4 for two reasons. Firstly, two levels of allelic exclusion
were assumed (thus the binary classification). Secondly, all genes and individuals shared the
same set of significance levels (e.g. Sig > 0.9), suggesting {Sig}ig may have been assumed
i.i.d., so all monoallelically (or biallelically) expressing genes within all individuals were
considered mechanistically independent and identical.

If at least the null distribution f(s|θg = b)—the one that represents the biallelic case
in Eq. 4 bottom—had been specified, binary classification could have been framed as fre-
quentist hypothesis testing using p-values and other error rates. In Section 5 I discuss the
consequences of classification without such error rates focusing on two inseparable questions
of classification: (i.) the number of monoallelically expressed genes and (ii.) what fraction
of monoallelically called genes are expected to be in fact biallelic, which is known as false
discovery rate (FDR).

In contrast, the regression analysis in the MAE project did specify a model class. This is
the normal linear family7 explanatory variables xi in each individual i. But this regression
model must be distinguished from genome-wide and population-wide normal linear models
of Section 3.3 on two grounds. First, in this case only 8 of the imprinted genes were modeled
and none of the others (that are either mono or biallelically expressed, see Eq 6). Second,
the response variable in this case was Ti instead of {Sig}g, raising two further questions: (i.)
is Ti sufficient (like {Sig}g are assumed to be, Section 2), and (ii.) how is the summation
over 8 genes in the definition of Ti (Eq. 2) affect the inference of parameters β, σ2? Section 6
will elaborate on these questions and possibly useful extensions to the current regression
model.

5 Classification and its error rates
5.1 The inseparability of two questions
As mentioned above, the classification framework of the MAE project raises two questions,
the first of which is the number of monoallelically expressed genes or, equivalently, their

7implemented in the glm R function, which was called in Ifat’s code without family argument thus
defaulting to gaussian, which is the normal linear model family.
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fraction
π1 =

#{monoallelically expressed genes}
m

, (7)

where m—as before—is the total number of (addressable) genes.
Let π0 = 1 − π1. Then the test statistic Sig is distributed as a π0 : π1 mixture of the

null and alternative distribution denoted in Eq 3-4 as f(s|b) and f(s|a), respectively. Thus
estimation of π1 or π0 requires the disentangling of f(s|b) from f(s|a) by fully specifying
the former (the null) and making some minimal assumptions on the latter (the alterna-
tive). Then estimation of π0 can be based on comparison between the empirical mixture
distribution of Sig and its theoretical null distribution as the classic article by Storey and
Tibshirani [3] explains. Equivalently, the comparison may be based on corresponding em-
pirical and theoretical distribution of p-values as shown by Fig. 1 Top taken from the same
article.

The second question raised by the MAE projects’ classification framework is that of
misclassification rates. This is inseparable from the first question because

π1 = (1− FDR)
#{+ calls}

m
+ (1− NPV)

#{- calls}
m

, (8)

where FDR means false discovery rate and 1− NPV is known as false omission rate, and a
“+” or “-” stands for a mono or biallelic call, respectively. These rates are obtained from
the probability of the four outcomes (TP, FP, TN, FN) of binary classification:

FDR =
Pr(FP)

Pr(FP) + Pr(TP)
(9)

NPV =
Pr(TN)

Pr(TN) + Pr(FP)
(10)

Those four probabilities {Pr(TP), ...} are exactly the labeled gray areas in Fig. 1 Bottom
right.

5.2 Illustration
I illustrate the practical impact of inseparability with a toy example by assuming that the
theoretical mixture distribution of p-values has a known probability density function

h(p) = π0 + π1λ(1− e−λ)e−λp (11)

for 0 ≤ p ≤ 1; λ > 0; 0 < π0 < 1. While this simple analytical form is largely motivated
by mathematical convenience, comparing the Top and Bottom left panels of Fig. 1 indicates
that similar distributions have already been observed in previous genome-wide studies [3],
although in some other context than allelic exclusion.

The form of the density h allows a closed form expression of the four probabilities
mentioned earlier and the calculation of the rates FDR and NPV (Eqs. 9-10). For instance,

Pr(TP) = π1[1− (1− e−λ)(e−λα − e−λ)], (12)

where the classification threshold α is the hypothesis test’s significance level8 shown in Fig. 1
Bottom right.

8 also known as the size of the test, its false positive rate, or the probability of type I error
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Table 2 demonstrates that FDR is sensitive to π1 illustrating the inseparability expressed
by Eq. 8. The two levels of π1 correspond to a previous conservative [1] and liberal [2]
estimate of the number of imprinted genes. That the impact of π1 (and of λ and α) was
found to be much weaker on NPV than on FDR (not shown). This is because π1 � π0 even
for the liberal estimate [2].

The following conclusions may be drawn from Table 2:

1. FDR is sensitive to π1 (see above): it may be several fold lower with the liberal
estimate [2] of π1 than with the conservative one [1]

2. FDR widely varies with λ and α such that

(a) greater λ corresponds to a greater difference between the null and alternative
distributions and hence to a more accurate test (i.e. better classifier)

(b) making the test stricter by decreasing α improves FDR but the rate of improve-
ment diminishes with α in a way that depends on λ; this behavior follows from
the functional form of Eq. 11 and need not be a general property of all hypothesis
tests tests

5.3 Impact on current conclusions
In its Figure 1 and S4 the MAE manuscript presents classification results based on a set of
three thresholds {t1, t2, t3}, t1 = 0.9, ... for Sig. This corresponds to an increasing sequence
of unknown false positive rates {α1, α2, α3} expressing decreasing statistical significance.
Counting the genes that passed the highest threshold t1 = 0.9 may seem informative on
π1, the fraction of monoallelically expressed genes. If error rates in Eq. 8 had been known
or estimated in the MAE project independently of π1, then that would be true. But such
knowledge on error rates from independent source has been lacking. So, the only thing
that would be informative on π1 is the comparison of the empirical distribution of Sig (or,
equivalently, of the corresponding p-value) to its theoretical null distribution [3].

For quantifying the false discovery rate (FDR) at some classification threshold, that
threshold must be given in terms of false positive rate α as in Table 2. In addition, π1 must
also be known (or estimated). So, again, the null distribution would be required for the
derivation/estimation of both α and π1 and consequently also for FDR.

FDR
λ threshold α π1 = 0.008 π1 = 0.052

10−2 0.87 0.50
20 10−4 0.86 0.48

10−8 0.86 0.47
10−2 0.55 0.15

2000 10−4 0.064 0.010
10−8 0.058 0.0090

Table 2: False discovery rate calculated using Eqs. 9 and 12 under the mixture distribution
function defined in Eq. 11 at various π1 and λ values and various significance levels α.
π1 = 0.008 and 0.052 correspond to previous estimate of ca. 200 and 1300 imprinted genes
by refs. [1] and [2].
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In summary, we cannot even roughly estimate how many of the genes called positive
monoallelically expressing at, say, t1 = 0.9 are expected to be biallelically expressing in
reality. Strikingly, what prevents us from reaching such estimates is precisely the lack of
knowledge on π1 due to the inseparability discussed in Section 5. This undermines the
conclusion of the MAE manuscript on the number of imprinted genes.

5.4 Suggestions on classification
Without knowing FDR what would be the best way of reporting our confidence in any of the
novel genes called monoallelically expressing? I propose here a conditional approach given
the previously identified imprinted genes. Significance of the novel genes could be quantified
using quantiles of the e.c.d.f. of Sig based on known imprinted genes. This would provide,
for each gene g and individual i, an estimate for the minimum false negative rate of calling
the (i, g) pair biallelically expressing when the monoallelic case is true in reality. However,
those quantiles would say nothing about minimal false positive rates that is p-values.

The trade-off of the above approach would be treating the previously identified imprinted
genes as an error-free gold standard for an incomplete set of monoallelically expressing genes
in the human DLPFC. Besides the impact of possible errors in that set, this would prevent
us addressing organism and tissue specificity of allelic exclusion.

Until this point {S1g, ..., Sng} have been assumed to be distributed identically and inde-
pendently across individuals for any given gene g. If {S1g, ..., Sng} were to be used as esti-
mators for some gene specific parameter θg, then it follows that the average S̄g = n−1

∑
i Sig

would result in an improved estimator in the sense that its standard error is diminished by
n−1/2 relative to Sig. Given n = 579 this would be more than 20× improvement.

This could be combined with the another suggestion under the hypothesis that for any
given gene g the set {Sig}i is i.i.d. (Eq. 3) both when g is bi and monoallelically expressed.
Then averaging over individuals would give statistic S̄g = n−1

∑
i Sig with the following

benefit. Suppose {S1g, ..., Sng} were to be used as estimators for some gene specific param-
eter θg reporting on whether g is bi or monoallelically expressed. Then S̄g would result an
improved estimator in the sense that its standard error is diminished by n−1/2 relative to
Sig. Given n = 579 this would be more than 20× improvement.

Clearly, the i.i.d. hypothesis does not hold if age or some other explanatory variables
influence allelic exclusion. The previous and suggested (below) regression analyses in the
MAE project test this hypothesis for variables internal to X (but provides no information
on those external to X). Even if the i.i.d. hypothesis is rejected by the regression analysis,
it may still be beneficial to use the aggregate statistic S̄g for certain inferred values of
parameters of the regression model. In that case, however, a normative way of classification
would be framed as Eqs. 5-6 or the corresponding generalized linear models discussed next.

6 Improving the regression analysis
The generalized linear models of Section 3.3 may be used for three distinct tasks in the
MAE project (using the notation of normal linear models given by Eqs. 5-6):

1. classification of gene g

by a frequentist test : given (b1, b2) test if (βg, σ
2) = (b1, b2)
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by a Bayesian test : given both (b1, b2) and (a1, a2) test if (βg, σ
2) = (b1, b2) or if

(βg, σ
2) = (a1, a2)

2. inference of (b1, b2) (or that of (a1, a2)) given that g is known to be biallelically (or
monoallelically) expressed

3. joint classification and inference

Without diving into details, the third task is the most challenging to implement yet in
theory this would suite MAE project the best since neither sets of conditions of the first
two tasks hold a priori, at least not on a genome-wide scale. Each of those tasks requires a
piece of information (the conditions above). If one of those pieces is known the other may
be obtained. But if neither are known then external source of information is needed due to
the reciprocity of obtaining the conditions based on each other.

The external information source is available for the second task (inference) in form
of previously identified monoallelically expressed genes but is unavailable for classification
because nothing is known about the impact of explanatory variables X. I will focus here on
the second task for the above reasons and also because the previous regression analysis of
the MAE project implemented a special case of this task in several senses. (Section 4).

In the first sense, regression parameters were only inferred for the case when g ∈ G8

where G8 is the set of 8 selected genes known to be imprinted. In the second sense, Ti

was used instead of {Sig}g:g∈G8 raising the question of sufficiency and the effect of the
aggregation (see the definition of Ti in Eq. 2) on inference. Finally, a normal linear model
was assumed, which is only a special case of generalized linear models.

All three points call for modifications of and extensions to the previous regression analy-
sis. Obviously, assessing the impact of age and other explanatory variables on a set G many
more than 8 known imprinted genes appears desirable. The concerns of sufficiency and
aggregation could be avoided by using simply {Sig}g:g∈G instead of Ti as response variables.

The question of normality and linearity is an important concern given the scatter plots
of Figure 3 of the MAE manuscript. This qualitative result might have motivated the
transformation of {S1g, ..., Sng} into e.c.d.f. as part of the definition of Ti (Eq. 2) in order
to improve the fit of the normal linear model.

But normality and linearity could be addressed with some type of generalized linear
model without the risk of loosing information with some transformation of {Sig}g:g∈G. The
optimal model type could be addressed by selection based on criteria (like AIC or BIC) that
incorporate both model fit to data and model complexity.
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Figure 1: π0 : π1 mixtures of null and alternative distributions of p-values. Top: figure taken
from ref. [3] showing 3170 p-values from a genome-wide study with estimated π0 ≈ 2/3
marked by the dotted line. Bottom left: the black and gray thick solid lines show the
probability density function for two mixture distributions defined by Eq. 11, with the same
π0 = 2/3 but different λ values. The bars correspond to the histogram of a 3170-sized
sample from the “black” distribution. Bottom right: the same “black” distribution function
on an expanded scale to illustrate the four outcomes of hypothesis testing; their probabilities
equal the gray areas delineated by the dotted lines.
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