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1 Introduction
1.1 Goals
estimation of 1− π0 , where π0 is the genome-wide probability (i.e. the expected fraction)

of biallelically expressed genes

within-gene variation how does exclusion state vary population-wide within any given
gene?

regression if there is such variation, how is it explained by age and other measured vari-
ables?

classification predict exclusion state for each individual–gene pair to learn about species
and tissue specificity

To what extent has the previous work achieved these goals? Estimation of π0 has not yet
been achieved. Within-gene variation has been characterized using the conditional distri-
bution of the Sig statistic for any given gene g but it remains unknown what is the relative
contribution of within-gene and of across-gene (genome-wide) variance to the total variance
(both across individuals and genes). Regression on explanatory variables has been performed
but left the generality and statistical significance of the results an open question. Classifi-
cation has been performed using Sig but without estimated error rates and—inconsistently
with the results of regression analysis—also without taking explanatory variables into ac-
count.

1.2 Improvement relative to previous approach
As explained in this section, answering the remaining questions is limited by the properties
of the previous models and—to even greater extent perhaps—by their incomplete or implicit
description. This has motivated the present article, which explicitly describes novel modeling
approaches—contrasting them to the previously used ones—, as well as their inferential
utility towards the remaining goals (Table 1).

Both the previous and present approach starts out from modeling read counts at het-
erozygous sites as binomial random variables. However, only the present approach considers
their joint distribution at the level of entities that are directly relevant to biology: tran-
scripts for a given individual and gene, population-wide within a given gene, and both
population- and genome-wide. This is achieved via local (transcript level, Section 2.2) and
global (individual and higher levels, Section 3) joint models of the complete data.
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previous proposed

local model(s)
read counts at heteroz. sites binomial binomial

sites jointly modeled no yes
direct biol. relevance no yes

global models
well-defined no yes

objective selection possible no yes
selection done inconsistently not yet

π0 estimation possible no yes

regression nonlinearity no yes
heteroscedasticity no yes

classification
test statistic Sig posterior pr.

likelihood (distrib.) known no yes
sufficiency (given likelihood) no yes

error control no yes

Table 1: Salient properties of previous model(s) and the ones proposed in this article, and
properties of inferences based on those models.

These new models draw direct, and explicit, link between read counts and allelic exclusion
state θig by enabling likelihood calculations. The previous approach was both indirect and
implicit because it used the Sig statistic derived from read counts to describe exclusion state
in a non-probabilistic way since the sampling distribution of Sig for a given exclusion state
was not specified. That in turn prevented likelihood calculations.

Were the likelihoods based on Sig expressed, they would lack some information on exclu-
sion state. This is because Sig only considers the proportion of read counts (for one allele)
discarding the counts themselves, which enhance confidence. Further information is lost
by the simplifying assumption on haplotype phase that all “higher read counts” originate
from the same chromosome. These shortcomings imply that Sig is not a sufficient statistic1

for exclusion state. Although the shortcomings had been recognized earlier, only partial
and post-hoc corrections were employed. In contrast, proposed local models operate with
counts per se and also relax the simplifying assumption on haplotype by considering all
possible allele configurations. Thus they contain all information on exclusion state and its
likelihood2.

The lack of Sig-based likelihood for exclusion state prevented the estimation of the error
rates of classification and that of genome-wide probabilities π for those states because the two
are inherently coupled, as explained in an earlier article3. On the other hand, all proposed
global models contain a π parameter vector, which can be estimated by maximum likelihood
based on the complete dataset (Section 4.3.1). That estimate then can be combined with
likelihood ratios representing the odds that the read count data support mono vs. biallelic
expression (Section 4.4). This yields the posterior probability of monoallelic expression,
which naturally incorporates error. Alternatively, likelihood ratios can be used on their own
as Bayes factors. Note that the Neyman-Pearson lemma4 guarantees that there do not exist
more powerful tests than that based on likelihood ratios.

1https://en.wikipedia.org/wiki/Sufficient_statistic
2Note that, trivially, the likelihood is always a sufficient statistic
3Feb 10, 2016: Project on Monoallelic Expression: a Statistical View
4http://mathworld.wolfram.com/Neyman-PearsonLemma.html
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Previous regression analysis used the vector LOI_Rg as a response variable, which was
derived from Sig with a data transformation step. Some limitations of LOI_Rg obviously
follow from those of Sig (discussed above). More limitations have been found5 to have
arisen from the previous incorrect use of regression weights. Moreover, the data transforma-
tion may introduce biased estimation of regression parameters due to insufficient removal
of the observed strong nonlinearity and heteroscedasticity of read count/Sig-based regres-
sion. Finally, the interpretation of LOI_Rg-based regression results in terms of exclusion
state remained unclear. All these shortcomings are now removed by the proposed logistic
regression approach using directly read counts or, alternatively, exclusion state as response
variables.

The above complications might have contributed to the inconsistency in previous analy-
sis that conflicting models were used in different inferences: LOI_Rg-based regression model
finding dependence on some explanatory variables (like age) and a Sig-based non-regression
model for classification that ignores any such dependence. The proposed approach is con-
sistent because the observed variable is read counts in all alternative models. Moreover, the
likelihood under all proposed global models can be calculated, which permits the objective
selection of the best fitting model using e.g. the Akaike or the Bayesian information criterion
(AIC, BIC, see Section 4.3).

2 Data and local models
2.1 The modeled data: read counts
We have i = 1, ..., I individuals, g = 1, ..., G genes and v = 1, ..., V polymorphic (SNP) sites.
With the notation v ∈ (i, g) we will express that site v is in gene g and it is heterozygous
in individual i, and we distinguish v from w if w ∈ (j, g) and if i 6= j even if both v and w
map to the same site in a reference genome (meaning they are homologous).

We assume only one alternative allele at each site v, and write Yv to denote the read
count of the alternative allele at site v. We also define

Yig = {Yv}v∈(i,g), nig = {nv}v∈(i,g) (1)
Y = [Yig], n = [nig], (2)

where [Yig] denotes a matrix whose rows are indexed by i = 1, ..., I and columns by g =
1, ..., G. Moreover, we have an I×R design matrix X = [xir], r = 0, ..., R−1 whose columns
are explanatory variables a.k.a. regressors except for the 0th column, whose entries xi0 = 1
for all i. All proposed inferences in this article will be based on Y and X.

Much of the previous inferences of the MAE project were based on the statistic S = [Sig].
The connection between S and Y can be drawn by introducing the “higher read count”
Hv = max(Yv, nv−Yv) and writing Sig =

(∑
v∈(i,g)Hv

)
×
(∑

v∈(i,g) nv

)−1

. As the vectors
Yig and nig are aggregated into the scalar Sig some information is inevitably lost, which in
turn leads to the insufficiency of Sig mentioned in Section 1.2.

2.2 Local models of allelic exclusion
The probability models presented here is local in the sense that they describe only hierar-
chically lower levels of parameters, i.e. those on which the observed read count data directly

5lab-notebook post from Mar 2, 2016: Repeating Ifat’s Regression Analysis with 5 More Genes
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symbol name/description type specific to
Yv read count at site v, altern. variant observed
nv read count at site v, total fixed
P multinomial proportions, Eq. 6 deterministic M1, M3
B regression parameters, Eq. 9 deterministic M2
ψv indicates altern. var. on maternal allele unobserved
φig indicates paternal allele exclusion (if any) unobserved
κ probability of paternal allele exclusion fixed
θig exclusion state indicator unobserved
θg exclusion state i. (zero var. within genes) unobserved M1.1, M2
µg exclusion state probabilities for gene g unobserved
π exclusion state probabilities genome-wide
ν “pseudocount” unobserved M1, M3
xi explanatory variables fixed M2, M3

Table 2: Parameters and other components of the proposed models

or relatively directly depends. Despite the qualifier “local”, these models are sufficiently
high level to describe for a given (i, g) pair the biologically relevant allelic exclusion state
introduced below. The global models in Section 3 will be based on these local models or
very similar ones. Parameters are summarized by Table 2.

2.2.1 Binary exclusion state

Suppose there are only two (allelic) exclusion states: biallelic and monoallelic expression.
We introduce the exclusion state indicator θig for any given (i, g) pair such that biallelic
expression of gene g in individual i is indicated by θig = 0 and monoallelic by θig = 1. Thus
θig is a Bernoulli random variable.

Suppose pig is the expected fraction of transcripts6 from the maternal chromosome and
1−pig for the paternal chromosome, and let qig = max(pig, 1−pig) implying that qig ≥ 1/2.

We regard qig as the single direct determinant of allelic exclusion: if qig is near 1/2
we call (i, g) biallelically expressed, whereas if qig is near 1 we classify (i, g) monoallelic.
Formally, let P0 = [1/2, p′) and P1 = [p′′, p′′′] disjoint subintervals of [1/2, 1] so that 1/2 ≤
p′ ≤ p′′ ≤ p′′′ ≤ 1 (Figure 1A).

Then we define exclusion state of (i, g) as follows:

qig ≡ max(pig, 1− pig) ∈

{
P0 ⇔ θig = 0, biallelic
P1 ⇔ θig = 1, monoallelic.

(3)

There are some complications with this definition. First, pig is unobserved and so must
be inferred from the observed read counts. This raises uncertainty about not only exact
value of pig but also whether pig ≥ 1/2 and therefore qig = pig, or else < 1/2 and therefore
qig = 1 − pig. Consider a Bernoulli variable φig (Figure 2), and let φig = 1 indicate the
former event and φig = 0 the latter with prior probability κ and 1 − κ, respectively. Thus
κ quantifies the tendency of the paternal allele to be excluded. In the present models κ is

6The word “expected” implies a probability distribution for maternal transcripts. This can be either
binomial if the total number of transcripts is fixed, or else Poisson. In the latter case pig is to be interpreted
as the relative transcription rate on the maternal chromosome.
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Figure 1: P0 and P1 are two subintervals of [1/2, 1], based on which a binary set of exclusion
states (K = 2) may be defined. (A) an example illustrating the general case (Section 2.2.1).
(B) Model M1 and M3. (C) Model M2, with a single explanatory variable age. Because of
the lower boundedness of age (≥ 0) and because of the presumed temporal decline of allelic
exclusion the upper end of P1 equals logit−1(β0).

not specific to individuals and genes but it is straight-forward to extend the models in that
direction at the expense of introducing many more parameters. It may be reasonable to set
κ = 1/2.

Several further complications arise because our data consists of read counts instead of
the count of full-length transcripts. We assume that the read count Yv for the alternative
allele at polymorphic site v is binomially distributed with parameters nv (the total read
counts) and pv. Read counts are known to be confounded by various measurement errors
but we assume here that they are proportional to allele specific transcription rates. This
allows us to write pv = pig given the random event that the alternative allele is on the
maternal chromosome; we denote that event with ψv = 1. Otherwise ψv = 0, which implies
that 1− pv = pig. ψv is another Bernoulli variable (Figure 2) and we will assume 1/2 prior
probability for ψv = 1 independently of v. Moreover, some reads may map to multiple
polymorphic sites v1, v2, ... coupling ψv1 , φv2 , .... We suppose this happens rarely enough to
be completely ignored so that all allele configurations ψv for any given (i, g) can be assumed
independent.

The pair (φig, ψv) will denote an allele configuration at site v. With the preceding consid-
erations the definition of exclusion state θig can be based on pv and the allele configuration
as shown in Table 3.

2.2.2 Multiple exclusion states

The binary local model may be generalized to a K-ary one, in which there are K ≥ 2
exclusion states. Then {Pk : k = 0, ...,K − 1} is a sequence of disjoint subintervals of
[1/2, 1] and the definition of exclusion states are given by Table 4.
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Figure 2: Dependencies of all read counts {Yv : v ∈ (i, g)} on parameters of the local model
for M1 and M3. The dashed square is a switch mechanism (Eq. 4) through which allelic
exlcusion state θig and allelic configuration (φig, ψv) select from P the pv parameter of the
binomially distributed read count Yv. Each circle denotes a random varibles; a diamond a
deterministic variable; fixed variables are without encosing shape. The rectangular plate
means replication of contained variables.

We will symbolically represent Table 4 by writing

pv = P [θig, δφigψv
] (4)

P =

 1− P0 P0

...
...

1− PK−1 PK−1

 , (5)

where δab is the Kronecker delta function, which is 1 if φig = ψv and 0 otherwise. Figure 2
illustrates how P depends on θig, φig, ψv and how in turn the read count Yv depends on it.

To see the utility of P , consider the following example with binary exclusion state (K =
2). Based on the data we have some uncertain knowledge on pv, which we want to use to infer
θig. Suppose we know that the allele configuration (φig, ψv) = (0, 1). Then δφigψv

= 0 and
so we need to consider only the first column of P . If the data supports pv = P [0, 0] = 1−P0

better than pv = P [1, 0] = 1 − P1, we can conclude that θig = 0 (biallelic expression) is
more likely than θig = 1 (monoallelic expression).

φig 6= ψv φig = ψv
biallelic θig = 0 1− pv ∈ P0 pv ∈ P0

monoallelic θig = 1 1− pv ∈ P1 pv ∈ P1

Table 3: Definition of the binary exclusion state and its indicator θig based on pv and the
allele configuration (φig, ψv)
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φig 6= ψv φig = ψv
biallelic θig = 0 1− pv ∈ P0 pv ∈ P0

mildly monoallelic θig = 1 1− pv ∈ P1 pv ∈ P1

...
...

...
...

strongly monoallelic θig = K − 1 1− pv ∈ PK − 1 pv ∈ PK − 1

Table 4: Definition of the general K-ary exclusion state and its indicator θig

In practice the allele configuration is unobserved so we are uncertain about it. However,
using our probability model we can take the expectation (i.e. average) over all four configu-
rations. If the number sig of polymorphic sites is > 1 then we can base the inference of θig
on all pv : v ∈ (i, g) jointly, taking expectation over all 4sig configurations.

3 Global models
Several global models are formulated in this article, which can be classified by two aspects
(Table 5):

1. the population-wide variation of exclusion state θig within each gene g and

2. how that variation is explained by the measured variables in X

M1 No influence of explanatory variables
A key aspect of M1 is that it accounts for population-wide variation within a given gene g
through a hierarchy of parameters (Figure 3). The indicator θig of exclusion state is a K-ary
multinomial random variable (or Bernoulli variable when K = 2) with a K-length parameter
vector µg = (µg0, ..., µgK−1) containing the probabilities for each exclusion state. This setup
permits population-wide variation within any given gene g. µg is itself a random variable
with Dirichlet distribution with parameters π, ν, which models the genom-wide variation of
allelic exclusion. π = (π0, ..., πK−1) are the prior probabilities for the K exclusion states
and the scalar ν controls (inversely) the density of µgk at πk.

Turning to the local properties of M1, each of the K subinterval (Section 2.2.2) consists
of a single point such that P0 = {1/2} and Pk = {pk} (k > 0), where pk is some fixed
number (Figure 1B). Taking binary state (K = 2) for instance, p1 may be fixed at 0.9.

variance of exclusion state θig within each gene g
any zero maximum

response var.:
none M1 M1.1 M1.2

read counts Yig M2
exclusion state θig M3

Table 5: Overview of the global models in this article.
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g = 1, ..., G
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π

g = 1, ..., G
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π
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Figure 3: (A) The inner plate of model M1 represents population-wide variation of exclusion
state θig within any given gene g whereas the outer plate genome-wide variation. (B) Within
gene variation disappears in the limit ν → 0, which simplifies model structure to M1.1. (C)
On the other hand when ν → ∞ within gene variation is maximized, which leads to another
simplified structure that is M1.2. Note that only the exclusion state θig and its “dependency
ancestors” are shown; κ, φig, ψv, ... are connected to φig as in Figure 2.

Then Eq. 4 remains the same but Eq. 5 changes to

P =


1/2 1/2

1− p1 p1
...

...
1− pK−1 pK−1

 . (6)

Let’s take for example the binary local model represented by P in Eq. 6 with K = 2.
If the allele configuration at site v is (0, 0) and the data supports pv = p1 stronger than
pv = 1/2 then we conclude, based only on v, that the exclusion state θig = 1 (i.e. monoallelic
expression) is more likely.

Now we will consider two special cases of M1 named M1.1 and M1.2. We give their
interpretation before their mathematical definition. The interpretation of M1.1 is that
individuals show no variation in exclusion status for any gene g. Thus it makes sense to
speak about bi or monoallelically expressing genes population-wide without the need of
looking at individuals. Model M1.2, on the other hand, means that all genes have the same
population-wide tendency for bi or monoallelic expression and the only source of variation
is the one within the population.

M1.1 Zero variance within each gene

As ν → 0, the Dirichlet distribution becomes multinomial and µgk will be 1 with probability
πk. For any gene g this couples the exclusion state for all individuals so that θ1g = ... = θIg.
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Figure 4: The structure of model M2, in which each read count Yv is the response variable to
the explanatory variable(s) xi that has been measured for each individual i. Both the global
and local structure is depicted. The global structure is similar to that of M1.1 (Figure 3).
The plates corresponding to replication over individuals i and genes g are omitted for clarity.

This means that we can replace the general structure of model M1 with a probabilisti-
cally equivalent7 but simpler structure by introducing θg ≡ θ1g and removing µg (Figure 3
middle).

M1.2 Maximum variance within each gene

In the limit ν → ∞ we have µ1 = ... = µG = π. Therefore we can once again simplify the
model structure by removing µg. But the effect on θig is the opposite in that θ1g, ..., θIg
become completely uncoupled in the sense that {θig}ig becomes independent and identically
distributed (Figure 3 right).

M2 Regression of Yv on explanatory variables
The global structure of this model (upper part of Figure 4) is essentially the same as M1.1.
So, for a given gene g all individuals have the same exclusion state θg but the population-wide
variation in explanatory variables xi induces variation in pv. To this end the local models
introduced in Section 2.2 must be extended with the regression of Yv on X. This is illustrated
by the lower part of Figure 4. For simplicity we describe this model assuming binary
exclusion state and briefly sketch the general K-ary case at the end of this section.

Given that Yv is binomial, logistic regression appears as a natural framework, where the
logit function links the expected fraction pv of Yv to the ith row of design matrix X unless

7 https://en.wikipedia.org/wiki/Convergence_of_random_variables
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the resulting pv < 1/2, see Figure 5. Therefore Eq. 4 modifies to

pv = max
(

logit−1(xi bv),
1

2

)
(7)

bv = B[θig, δφigψv ], (8)

where bv is the R-length vector (bv0, ..., bvR−1)
> and plays the role of regression coefficient

in Eq. 7. As Eq. 8 says, bv is an entry of matrix B of regression parameters, which is indexed
by the exclusion state θig and the allelic configuration (φig, ψv).

As Figure 5 shows for a monoallelically expressed gene, pv declines from an initial high
value at birth to 1/2 with age x. This means that P1 is not a single point as in M1 but a
long interval (1/2, logit−1(β0) shown inf Figure 1C.

Analogously to P under M1 (Eq.6), B under the present model M2 facilitates the infer-
ence of θig based on yv and (φig, ψv). But because bv is a vector, B has a more complex
structure than P , consisting of four R-length vectors:

B =

(
(0, ..., 0)> (0, ..., 0)>

−β β

)
(9)

β = (β0, β1, ..., βR−1)
> (10)

β is a vector of regression parameters consisting of the intercept β0 and a “slope” pa-
rameter βr for each explanatory variable xr, 0 < r < R. The bottom left entry represents
a reflection of the regression curve defined by the bottom right entry accross the horizontal
straight line defined by pv = 1/2, which is analogous to the “reflection” in P of the point
p1 across the same horizontal line resulting in 1− p1. That the 1, ..., R− 1 elements of top
right entry are 0 expresses the assumption that when θig = 0 (biallelic expression) then the
explanatory variables have no impact on pv (Eq. 7); that the 0th element is also 0 follows
from the equality logit−1(0) = 1/2 showing that exclusion state θig = 0 under both M1 and
the present M2 is defined by pv = 1/2.

The connection between M1 and M2 can be made even more explicit by considering the
special case of M2 that β1, ..., βR−1 = 0 so that explanatory variables have no impact on
pv also when θig = 1 (monoallelic expression). Furthermore, if β0 = logit(p1) also holds,
then M2 is probabilistically equivalent to M1.1. So, for consistency between models, we
should fix β0 = logit(p1), which has the additional advantage of having one less unknown
parameters.

It is conceptually straight-forward to extend above model from binary to general K-ary
exclusion state. In that case the B matrix (Eq. 9) has K rows; the 0th row is identical
to the binary case, whereas rows k = 1, ...,K − 1 have distinct βk vectors of the form of
(βk0, βk1, ..., βkR−1)

>.

M3 Regression of θig on explanatory variables
We only sketch this regression model because M2 looks a better fitting candidate. Model M3
is quite similar to M1 (Figure 6). The key difference is the replacement of µg by xiβg =
(betag0, ..., βgR−1) so that the allelic state θig is a response to the explanatory variables in
xi with regression coefficient βg. βg in turn is a random variable parametrized by vector π
and some other parameters ρ. An attractive distribution family is yet to be found for βgr.

With this model structure the variation of exclusion state has three components: the
genome-wide variation of their effect mediated by βg, a systematic within-gene variation
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Figure 5: Dependence of pv, the expected read fraction of the alternative allele, on ex-
planatory variable age x given by Eq. 7 when θig = 1 (monoallelic expression) and the allele
configuration is φig = ψv. Regression parameter β0 = logit(p1) where p1 is fixed at 0.9.
β1 = −0.02 year−1 corresponding to an exponential decay time constant of 50 years.

due to the measured explanatory variables xi, and the remaining within-gene variation
unexplained by xi.

4 Inference
Likelihood functions play a central in both frequentist (classical) and Bayesian inference. In
this section we present various likelihood functions for the local and global models introduced
in Section 3.

4.1 Likelihood of local models
Since the read count Yv of the alternative variant at any given heterozygous site v, the
lowest-level likelihood functions are(

nv
yv

)
pyvv (1− pv)

nv−yv =

{
fv(yv|nv, P, φig, ψv, θig), pv = Eq. 4 (M1,M3)

fv(yv|nv, xi, B, φig, ψv, θg), pv = Eq. 7, 8 (M2).
(11)

As mentioned in Section 2.2 the allelic configurations {(φig, ψv) : v ∈ (i, g)} are neither
observed nor informative and so must be considered nuisance parameters to be removed by
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Figure 6: The global structure of model M3. The exclusion state indicators θig play the
role of response variables in regression. Thus, the R − 1 explanatory variables in xi have
a direct effect on exclusion state θig but only indirect effect on read counts Yv. This is the
key distinction from the regression framework of M2.

marginalization. So we take the expectation over all possible configurations. This yields the
following likelihood function under model M1 and M3:

Lkig ≡ fig(yig|nig, P, κ, θig = k) (12)

=
1

2

1∑
φig=0

κφv (1− κ)1−φv

∏
v∈(i,g)

1∑
ψv=0

fv(yv|nv, P, φig, ψv, θig = k), (13)

where k = 0, ...,K−1 and Lkig is a convenient shorthand. Under model M2 fig has the same
form except that P is replaced by xi, B and θig by θg as in Eq. 11. The same shorthand
Lkig shall be used model M2 as well; its specific semantics shall be clear from the context.

4.2 Regression parameters under M2 from training data
For this estimation we need a training set of genes known to be expressed monoallelically
(θg = 1), collected from I ′ individuals. Unless we have training data distinguishing between
different strengths of allelic exclusion, we must use the binary version of model M2. Then
the likelihood for the B matrix of regression parameters based on the training data is

LM2(B) =
∏
g

I′∏
i=1

L1
ig (14)

where L1
ig is given by the modification of Eq. 12-13 as described in Section 4.1. The two

running products represent the data aggregation over individuals i and monoallelically ex-
pressed genes g describing the complete training data set.
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4.3 Model selection and estimation of π

Consider a set M of alternative models like the proposed ones in this article. Model selection
means to find the best model(s) according to a criterion reflecting its fit to the observed
data. The general frequentist8 procedure goes as follows:

1. express the marginal likelihood LM for π based on y and X under all models M ∈ M,
by taking expectations (over nuisance parameters such as µig, ψv or over unknown θig)

2. maximize LM with respect to π obtaining the ML estimate π̂M = arg maxπ LM (π)

3. for each M ∈ M evaluate model fit using some objective, likelihood-based, criterion
such as AIC, BIC and select the highest scoring model M∗ and the corresponding π̂M∗

In the following section (4.3.1) we will express the marginal likelihoods for π (and possi-
bly other parameters). Computational points on optimization and implementation are not
discussed. In Section 4.5 we consider model comparison using simulated data.

4.3.1 Marginal likelihood

Under model M1 the marginal likelihood LM1(π, ν) ≡ f(y|n, P, κ, π, ν) for π and ν is given
by

LM1(π, ν) =
Γ(ν)∏
k Γ(πkν)

∏
g

∫ 1

0

∏
k

µπkν−1
k

∏
i

∑
k

Lkig dµ. (15)

The summation of Lkig terms corresponds to taking expectation over all K exclusion
states, whereas the integral marginalizes over µ. The running product over i follows from
the conditional independence of exclusion states among individuals given gene g, and the
one over g from the assumed independence of genes.

LM1 in Eq. 15 depends on the parameter ν, which may be of some interest because it
quantifies the population-wide variation of exclusion state within any given gene. We may
decide not to care about ν or take it to the limit ν → 0 or ν → ∞ by choosing M1.1 or M1.2
a priori, i.e. without evaluating how well they fit the data. To obtain the likelihood for those
cases let us denote LM1(π) ≡ f(y|n, p, κ, π) and recall Eq 12. Then Eq. 15 simplifies to

LM1.1(π) =
∏
g

∑
k

∏
i

Lkig (16)

LM1.2(π) =
∏
i,g

∑
k

Lkig, (17)

where Lkig is used in the sense of M1-M3 (Eq. 12).
Turning to model M2, let us assume that the matrix B of regression parameters is known

(preset and/or estimated as in Section 4.2). Write LM2(π) ≡ f(y|n,X,B, κ, π). It is easy
to see that LM2(π) has the same form as Eq. 16; of course in this case the semantics of Lkig
is connected to M2 (recall remark below Eq. 12-13).

8The presented frequentist model selection procedure has a Bayesian equivalent with the advantage that
similarly well scoring models may be averaged together.
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4.4 Classification
For binary exclusion state (K = 2) we can formulate the task of classification for a given
(i, g) as the statistical test of two simple hypotheses. The null hypothesis is that of biallelic
expression: Big : θig = 0 and the alternative monoallelic expresssion Mig : θig = 1.

As mentioned in Section 1.2 the Neyman-Pearson lemma ensures that the likelihood ratio
Λig = L1

ig/L
0
ig used as test statistic affords the most powerful test at a given significance

level, so it is highly preferable to use Λig. For nested hypotheses H0 ⊂ H1 the asymptotic
distribution of twice the log-likelihood ratio is χ2 with degrees of freedom given by the
increase in unknown parameters from H0 to H1. However, in the present case H0 = Big
and H1 = Mig because we defined exclusion states based on disjoint intervals (P0 and P1,
Section 2.2.1). For this reason H0 is not ⊂ H1 so the asymptotic χ2 distribution doesn’t
hold.

Fortunately, however, the present case lends itself to Bayesian hypothesis testing with
Λig playing the role of Bayes factor and π1/π0 the corresponding prior odds. Let’s write
Pr(Mig) ≡ π1 to emphasize that π1 is the prior probability of monoallelic expression. Like-
wise, let Pr(Big) ≡ π0. Then the posterior probability of monoallelic expression given nig
and after observing that Yig = yig is

Pr(Mig|nig, yig) =
L1
igPr(Mig)

L1
igPr(Mig) + L0

igPr(Big)
. (18)

This Bayesian hypothesis testing easily extends to the general case of K-ary allelic state
(K ≥ 2), where Big : θig = 0 as in the binary case but Mig : θig > 0. Then Pr(θig = k)

can be calculated as L1
igPr(θig = k)

/∑
k′ L

k′

igPr(θig = k′). Therefore Pr(Mig|nig, yig) =∑
k:k>0 Pr(θig = k).

4.5 Thoughts on simulations
Simulations are helpful in many ways such as comparing performance of alternative ap-
proaches in some inference task. Two important choices must be made prior to a simulation
experiment: the inference task and the model (the sampling distribution). Testing under all
relevant tasks (classification or estimation of parameters such as π) is desirable. However, a
single model that presumed to be true should be selected based on mechanistic arguments
and/or model fit to real data.

In the present case, what should be that presumed true model? As pointed out in
Section 1.2, the previous approaches do not allow objective, likelihood-based, evaluation of
model fit. Turning to mechanistic arguments, how should allelic exclusion depend on the
measured explanatory variables like age or gender? Suppose we have a reason to exclude such
dependence. Then it still remains to be specified how allelic exclusion varies population-wide
within any given gene.
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