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Abstract

How gene expression correlates with schizophrenia across individuals is beginning to be examined
through analyses of RNA-seq from post-mortem brains of individuals with disease and control
brains. Here we focus on variation in allele-specific expression, following up on the Common-
Mind Consortium (CMC) RNA-seq experiments of nearly 600 human dorsolateral prefrontal cortex
(DLPFC) samples. Analyzing the extent of allelic expression bias—a hallmark of imprinting—we
find that the number of imprinted human genes is consistent with lower estimates (= 0.5% of all
genes) and thus contradicts much higher estimates. Moreover, the handful of putatively imprinted
genes are all in close genomic proximity to known imprinted genes. Joint analysis of the imprinted
genes across hundreds of individuals allowed us to establish how allelic bias depends on various
factors. We find that age and genetic ancestry have gene-specific, differential effect on allelic bias.
In contrast, allelic bias appears to be independent of schizophrenia.

Introduction

The observation [1, 2] that maternally derived microduplications at 15q11-q13—harboring the im-
printed gene UBE3A—may not only cause Prader-Willi syndrome, but are also highly penetrant for
schizophrenia has raised the possibility that perturbation of regulation of imprinted genes in general
may play a role in psychotic disorders. As it is known that the extent of imprinting of individual
genes varies over different tissues we chose to analyze the DLPFC region, which controls complex
cognitive and executive functions and is known to display functional abnormalities in schizophrenia.

A related question is the number of imprinted genes in the human brain. Some 1,300 genes
were estimated to be imprinted in the mouse brain [3] but followup studies using mouse or human
subjects arrived at estimates that are lower with an order of magnitude [4, 9, 5, 6, 7].

We obtained DLPFC RNA-seq data from the CMC [8] (http://www.synapse.org/CMC) and
analyzed allele-specific expression with the idea of (i) identifying imprinted genes in the adult
human brain and (ii) explaining the variability in allelic bias across 579 individuals in terms of
their psychiatric diagnosis, age at death, etc. This was facilitated by the balanced case-control
groups (258 SCZ, 267 Control, 54 bipolar or other affective/mood disorder, AFF) and the large age
variability in the cohort.

Results

Identification of imprinted genes in the adult human brain

For each individual 7 and gene g we quantified allelic bias based on RNA-seq reads using a statistic
called read count ratio S;q (Fig. 1, Methods), which ranges from 0.5 to 1 indicating unbiased biallelic
expression (at 0.5), some allelic bias (at intermediate values) or strictly monoallelic expression (at
1). We corrected for a number of factors this approach is known to be sensitive to. We quality-
filtered RNA-seq reads and helped distinguish allele-specific reads using DNA genotyping data
before calculating S and then applied post hoc corrections for mapping bias (Methods).

Of 15584 genes with RNA-seq data 5307 genes passed our filters designed to remove genes with
scarce RNA-seq data reflecting low expression and/or low coverage of RNA-seq (Methods: “Quality
filtering”). Fig. 2 presents the conditional empirical distribution of S.4 across all individuals given



each gene g. The observed wide S., distributions suggest large across-individuals variation of allelic
bias for all genes, even if a substantial component of the S., variation originates from technical
sources. Still, as expected, for many genes known to be imprinted in mice or in other human tissues
(referred to as known imprinted genes like PEG10, ZNF331) the distribution of S., was shifted to
the right signaling strong allelic bias (Fig. 2, upper half).

To identify imprinted genes in the human adult DLPFC we defined the score of each gene g as
the fraction of individuals ¢ for whom S;, > 0.9. We ranked all 5307 genes according to their score
(Fig. 2 bottom right). An alternative definition of the score, S;; > 0.7, yielded similar ranking
(Supplementary Fig. 11). The heat map of the S., distribution for ranked genes (Fig. 2, lower left)
shows that the top 50 genes, which constitute ~ 1% of all genes in our analysis, are qualitatively
different from the bottom =~ 99% exhibiting strongly right-shifted distribution of S., characteristic
to imprinting.

29 of the top-scoring 50 genes fell into previously described imprinted gene clusters (Supple-
mentary Fig. 1); 21 of these 29 are known imprinted genes while 8 are nearby candidates defined
as genes near (< 1Mb of) known imprinted ones but themselves previously not shown to be im-
printed (blue and green y-axis labels in Fig. 3). A priori the expectation is that known imprinted
genes and nearby candidates are much more likely to be imprinted in the present data set than
distant candidates defined as genes that neither belong to nor localize near known imprinted genes
(Fig. 3, red y-axis labels). We combined this prior expectation with two tests based on our data
to distinguish imprinting from alternative causes of high read count ratio such as mapping bias
and cis-eQTL effects [9] (see Methods: “Reference/non-reference allele test” and “Test for nearly
unbiased allelic expression”). The results of both tests (X’s and black bars, Fig. 3) agreed well
with the a priori expected status. This prompted us to call imprinted in the adult human DLPFC
those genes in the top 50 that are either known imprinted or nearby candidates. We included also
the known imprinted gene UBE3A, which ranked below 50 but whose score was still substantial
(Supplementary Fig. 2) yielding 30 imprinted genes (panel headers in Fig. 4-5).

Explaining the variability in allelic bias of imprinted genes

Getting at the central question of our work Fig. 4 shows that read count ratio is similarly distributed
in the Control, SCZ and AFF group for all 30 imprinted genes suggesting independence between
allelic bias and diagnosis of schizophrenia. Similar pattern was observed for not imprinted genes
(Supplementary Fig. 12).

To support the above qualitative result on imprinted genes, we fitted several fixed and mixed
effects models [10] that model the dependence of read count ratio jointly on all explanatory vari-
ables (Methods: “Statistical models—informal overview”, and beyond). Such joint models can
capture much of the complex pattern of dependencies in genomic data including those we observed
within and between technical and biological explanatory variables (Supplementary Table 1, Sup-
plementary Fig. 3). For both the fixed and mixed class we selected the model that fitted the data
the best (unlm.Q/wnlm.Q for both fixed and mixed models, Supplementary Fig. 6-8). Fixed and
mixed models also agreed qualitatively on gene-specific coefficients reporting effects/dependencies
(Supplementary Fig 9-10). We based final inference on the selected mixed model because that gains
power from letting genes “borrow strength from each other” (Supplementary Fig. 5).

Based on the best fitting mixed model (henceforth “the model”) we could formally reject the
hypotheses that read count ratio depends on diagnosis as either main effect or interaction (see term
(1| Dx) and (1|Dx : Gene) in Table 1, respectively). This key result is not due to low power. This



is because in the mixed model the Gene variable (which identifies the gene that a particular data
point corresponds to) is similar to the Dx variable (reporting on disease status) in that they are
both categorical and are modeled as random effects. If Dx had an effect size that is comparable to
the effect of Gene than that effect would be detected by our model based inference since the effect
of Gene is highly significant. See (1 | Gene) in Table 1 and compare panels in Fig. 4).

Scatter plots suggested that the read count ratio depends negatively on age for some imprinted
genes, depends positively for others, and is independent of age for the rest of imprinted genes
(Fig. 5 and Supplementary Fig. 4). This apparent dependence might be indirect, i.e. one that
is mediated by some variable(s) “inbetween” age and read count ratio (Supplementary Fig. 3, 5)
but the model allowed us to isolate the direct component of age dependence: we found that the
gene-specific random age effect is indeed significant even if no fixed effect—which would be shared
by all imprinted genes—was supported (see (Age | Gene) and Age, respectively, in Table 1).

Based on the model we also predicted gene-specific regression coefficients mediating the direct
component of age effect (Supplementary Fig. 10 top middle). The predicted coefficients agreed well
with all but a few panels of Fig. 5 the latter of which (e.g. UBE3A) therefore represent purely
indirect dependence.

The same type of analysis on the effects of ancestry principal components and gender gave sim-
ilar results: while the fixed effect, shared by all genes, of these variables was negligible, three of the
random, gene-specific, effects received significant support. These three, ordered by decreasing sta-
tistical significance, are (Ancestry.1|Gene), (Ancestry.3| Gene) and (1| Gender : Gene) (Table 1).
The corresponding predicted random coefficients are presented in Supplementary Fig. 10.

Although some of the random effects described above are statistically significant (Table 1), their
size is relatively subtle (Fig. 5). Nonetheless, we focussed on genes with very strong allelic bias,
in other words nearly monoallelic expression, because that is a hallmark of imprinted genes. In
these genes even a subtle change in allelic bias may lead to a qualitative change that carries some
biological significance.

Finally, we fitted the same mixed models to two subsets of data, each containing only 15 genes.
The results (Supplementary Table 3) are qualitatively similar to those based on the full data set
with 30 genes apart from a few marked differences that are explained by the reduction in both the
number of data points and in the variability of certain effects across genes.

In summary age, ancestry, and to a lesser extent gender, are suggested by our model-based
analysis to exert effect on allelic bias in a way that the direction and magnitude of the effect varies
across genes.

Discussion

The number of imprinted genes in the mammalian brain has been controversial: some early genome
wide studies [3, 11] estimated over a thousand, suggesting that the number of imprinted genes
in the brain is an order of magnitude greater than in other tissues. Later work cast doubt on
the methodology used and found that the number of imprinted genes in brain is in line with
expectations from studies of other tissues, identifying only a handful of new candidate imprinted
genes in brain [5, 6, 7]. Based on 579 postmortem human DLPFC samples we find evidence
supporting only a handful of novel imprinted genes all of which reside in genomic locations nearby
to known imprinted genes. Thus our results support those more recent studies that found no large
excess of imprinted genes in the brain.



The large size of our sample and the case-control makeup allowed us to explore the potential for
correlation of extent of imprinting in the DLPFC with schizophrenia. Although our approach gave
strong support for dependence of imprinting on age and ancestry, no dependence on schizophrenia
was detected either when we assumed that the dependence is the same for all imprinted genes or
that it varies across genes. Thus our data indicate that imprinting in the DLFPC does not play a
significant role in schizophrenia in contradiction of the “imprinted brain” hypothesis [12]. Given the
complex genetic architecture of schizophrenia [13] as well as technical noise in postmortem brain
RNA studies there could still be some correlation of the extent of imprinting and schizophrenia.

We found that imprinting depends on ancestry in a gene specific manner but the type of de-
pendence that is shared by all imprinted genes was not supported. This is expected because the
studied ancestry variables must incorporate some of the cis expression QTLs in imprinted genes
such that those eQTLS perturb allelic bias in a gene specific manner.

Our finding that imprinting depends on age in later adulthood is rather intriguing given the
quantitative relationship between epigenetics and aging [14]. Age dependence of imprinting through
early postnatal life supported experimentally [7] but such dependence during later adulthood has
so far only been predicted [15] based on a hypothesis that links “genomic imprinting and the social
brain” [16]. Previous genomics studies [5] were statistically underpowered to address this question
in humans. Although our age-related finding supports the “social brain” hypothesis, it leaves the
possibility open that the observed age related changes indicate merely the loss of tight regulation
of those genes with aging.

Methods

Defining the read count ratio to quantify allelic bias

We quantified allelic bias based on RNA-seq reads using a statistic called read count ratio S, whose
definition we based on the total read count T" and the higher read count H, i.e. the count of reads
carrying only either the reference or the alternative SNP variant, whichever is higher. The definition

is
S = gt = . )
ig sts
where 7 identifies an individual, g a gene, and the summation runs over all SNPs s for which gene
g is heterozygous in individual 7 (Fig. 1). Note that if B;, is the count or reads that map to the b;,
allele (defined as above) and if we make the same distributional assumption as above, namely that
B;, ~ Binom(pig, Tig), then Pr(H;; = Big|pig), the probability of correctly assigning the reads with
the higher count to the allele towards which expression is biased, tends to 1 as p;; — 1. We took
advantage of this theoretical result in that we subjected only those genes to statistical inference,
whose read count ratio was found to be high and, therefore, whose p;, is expected to be high as
well.

Fig. 1 illustrates the calculation of S;, for the combination of two hypothetical genes, g1, g2,
and two individuals, i1,42. It also shows an example for the less likely event that the lower rather
than the higher read count corresponds to the SNP variant tagging the higher expressed allele (see
SNP s3 in gene g1 in individual i5).

Before we carried out our read count ratio-based analyses, however, we cleaned our RNA-seq
data by quality-filtering and by improving the accuracy of SNP calling with the use of DNA SNP




array data and imputation. In the following subsections of Methods we describe the data, these
procedures, as well as our regression models in detail.

Brain samples, RN A-seq

Human RNA samples were collected from the dorsolateral prefrontal cortex of the CommonMind
consortium from a total of 579 individuals after quality control. Subjects included 267 control
individuals, as well as 258 with schizophrenia (SCZ) and 54 with affective spectrum disorder (AFF).
RNA-seq library preparation uses Ribo-Zero (which selects against ribosomal RNA) to prepare the
RNA, followed by Illumina paired end library generation. RNA-seq was performed on Illumina
HiSeq 2000.

Mapping, SNP calling and filtering

We mapped 100bp, paired-end RNA-seq reads (/~ 50 million reads per sample) using Tophat to
Ensembl gene transcripts of the human genome (hgl9; February, 2009) with default parameters
and 6 mismatches allowed per pair (200 bp total). We required both reads in a pair to be suc-
cessfully mapped and we removed reads that mapped to > 1 genomic locus. Then, we removed
PCR replicates using the Samtools rmdup utility; around one third of the reads mapped (which is
expected, given the parameters we used and the known high repeat content of the human genome).
We used Cufflinks to determine gene expression of Ensembl genes, using default parameters. Using
the BCFtools utility of Samtools, we called SNPs (SNVs only, no indels). Then, we invoked a
quality filter requiring a Phred score > 20 (corresponding to a probability for an incorrect SNP call
< 0.01).

We annotated known SNPs using dbSNP (dbSNP 138, October 2013). Considering all 579
samples, we find 936,193 SNPs in total, 563,427 (60%) of which are novel. Further filtering of this
SNP list removed the novel SNPs and removed SNPs that either did not match the alleles reported
in dbSNP or had more than 2 alleles in dbSNP. We also removed SNPs without at least 10 mapped
reads in at least one sample. Read depth was measured using the Samtools Pileup utility. After
these filters were applied, 364,509 SNPs remained in 22,254 genes. These filters enabled use of data
with low coverage. For the 579 samples there were 203 million reads overlapping one of the 364,509
SNPs defined above. Of those 158 million (78%) had genotype data available from either SNP array
or imputation.

Genotyping and calibration of imputed SNPs

DNA samples were genotyped using the Illumina Infinium SNP array. We used PLINK with default
parameters to impute genotypes for SNPs not present on the Infinium SNP array using 1000 genomes
data. We calibrated the imputation parameters to find a reasonable balance between the number
of genes assessable for allelic bias and the number false positive calls since the latter can arise if a
SNP is incorrectly called heterozygous.

We first examined how many SNPs were heterozygous in DNA calls and had a discordant
RNA call (i.e. homozygous SNP call from RNA-seq) using different imputation parameters. Known
imprinted genes were excluded. We examined RNA-seq reads overlapping array-called heterozygous
SNPs which we assigned a heterozygosity score Ly of 1, separately from RNA seq data overlapping
imputed heterozygous SNPs, where the Ly score could range from 0 to 1. After testing different
thresholds we selected an Lypet cutoff of 0.95 (i.e. imputation confidence level of 95%), and a



minimal coverage of 7 reads per SNP. With these parameters, the discordance rate (monoallelic
RNA genotype in the context of a heterozygous DNA genotype) was 0.71% for array-called SNPs
and 3.2% for imputed SNPs.

The higher rate of discordance for the imputed SNPs is due to imputation error. These were
taken into account in two ways. First, we considered all imputed SNPs for a gene g and individual
i jointly. Second, we excluded any individual, for which one or more SNPs supported biallelic
expression.

Quality filtering

Two kind of data filters were applied sequentially: (1) a read count-based and (2) an individual-
based. The read count-based filter removes any such pair (i, g) of individual ¢ and genes g for which
the total read count T;, < t;., where the read count threshold ¢,. was set to 15. The individual-
based filter removes any genes g (across all individuals) if read count data involving g are available
for less than t;,q number of individuals, set to 25. These final filtering procedures decreased the
number of genes in the data from 15584 to n = 5307.

Reference/non-reference allele test to correct for mapping bias and eQTLs

We designed this test to distinguish imprinting from alternative causes of high read count ratio
(Fig. 3): mapping bias or cis-eQTL effects. For any given gene this is a possibly compound test
since there may be multiple SNPs that are informative for the read count ratio (see Defining the
read count ratio above).

For a given gene the compound null hypothesis is that the observed high read count ratio is
due only to imprinting. For each informative SNP this hypothesis means that the reference and
non-reference allele are associated with equal probability to the higher read count [9] (see Methods:
“Defining the read count ratio to quantify allelic bias”). Thus for each SNP we assumed that the
number of individuals for whom the reference allele is associated to the higher read count is binomi-
ally distributed with probability parameter 0.5. The we calculated the fraction of informative SNPs
for which the null hypothesis can be rejected at 0.05 significance level and used this information to
decide whether the compound null hypothesis for the gene itself can be rejected.

Test for nearly unbiased allelic expression

The null hypothesis of this test is that the higher read count H;, = S;,T;4 for gene g and individual
i is drawn from a binomial distribution with a probability parameter p;; ~ 0.5 suggesting nearly
unbiased allelic expression. More specifically, the test was defined by the criteria

Sig < 0.6 and UCL;, <0.7, (2)

where the 95% upper confidence limit UCL;, for the expected read count ratio p;; was calculated
assuming that the higher read count H;, ~ Binom(p;4, T;4), on the fact that binomial random
variables are asymptotically (as T;; — o0o) normal with var(H;q) = Tigpig(1 — pig), and on the
equalities var(Sy,) = var(Hig/T;,) = var(Hi,)/T;,. Therefore

UCng = Sig + 20.975 (3)



where z, is the p quantile of the standard normal distribution.

Data transformations

We found transformations of the read count ratio data to be useful for fitting our statistical models
(Methods: “Statistical models—informal overview”, and beyond). We used either (or none) of the
following two transformations:

1. The quasi-log transformation, defined as

T;
7Q(Sigi Tig) = Qig = —log (1 - SigT_ ic) ) (4)
ig

where S;4, and T;; mean read count ratio and total read count for individual ¢ and gene g; log
means natural logarithm (base e); ¢ is a pseudo read count set to 1 in order to avoid zero in
the parenthesis since the log function is undefined at 0.

2. The rank transformation
_ #{J: Sjg < Sig}
#Jj

Note that j may equal ¢ in Eq. 5. Thus, this transformation first ranks individual ¢ among
all individuals j and then scales the ranks between 0 and 100.

TR(Sig; {Sjg}s) = Rig

x 100. (5)

Statistical models—informal overview

We modeled the dependence of read count ratio of imprinted genes jointly on all biological and
technical explanatory variables (Supplementary Table 1) using several multiple regression models.
Based on their structure our models can be classified into two sets of fixed and a set of mixed
regression models (Supplementary Fig. 5). Furthermore our models can be also classified based on
non-structural properties (link function, error distribution, weighting, and the data transformation
to read count ratio; see model classes in Supplementary Table 2).

Supplementary Fig. 5 explains that among the two fixed and the mixed structural model class
the mixed one is both more powerful and robust because its random effects terms allow gene-
specific parts of the model to “borrow strength from each other”. The cost of the enhanced power
in mixed models is the lack of estimates and confidence intervals (as well as p-values) for gene-
specific coefficients (parameters), which the less powerful fixed models do provide (Supplementary
Fig. 9). Instead of being estimated, gene-specific coefficients in mixed models therefore can only
be predicted without information on confidence surrounding them (see Supplementary Fig. 10 for
predicted gene-specific coefficients under a mixed model). Nonetheless, the low power and low
robustness of fixed models became apparent from results like those in Supplementary Fig. 9 so we
based our final inference (Table 1) on mixed modeling. Note, however, that we found an overall
qualitative agreement between mixed and fixed models regarding gene-specific coefficients (compare
Supplementary Fig 9 and 10).

To select the best model within the mixed structural class we compared model fit of the non-
structural types (Supplementary Fig. 8) and found that the unlm.Q and wnlm.Q types fitted the
data the best. Similar results were obtained for fixed models (Supplementary Fig. 6, 7).



Statistical models—formal overview

Our fixed and mixed effects multiple regression models are all generalized linear models (GLMs).
GLMs in general describe a conditional distribution of a response variable y given a linear predictor
n such that the distribution is from the exponential family and that E(y|n) = g~!(n), where g is
some link function. In the present context the response y is the observed read count ratio that
is possibly transformed to improve the model’s fit to the data. We performed fitting with the
Ime4 and stats R packages and tested several combinations of transformations, link functions, and
error distributions (Supplementary Table 2). For inference we used the best fitting combination
(unlm.Q, Supplementary Table 2) as assessed by the normality and homoscedasticity of residuals
(Supplementary Fig. 8, also Supplementary Fig. 6, 7) as well as by monitoring convergence.

In mixed GLMs the linear predictor n = X8 4+ Zb and in fixed GLMS n = X3, where X, Z are
design matrices containing data on explanatory variables whereas [ and b are fixed and random
vectors of regression coefficients that mediate fixed and random effects, respectively (see Methods:
“Detailed syntax and semantics of mixed models” and Supplementary Fig. 5 for details).

Besides the random effects term Zb the key difference between the mixed and fixed models in
this study is that the former describes read count ratio jointly for all imprinted genes and the latter
separately for each imprinted gene. An important consequence is that our mixed models are more
powerful because they can utilize information shared by all genes. Therefore we preferred mixed
models for final inference and used fixed models only to guide selection among possible mixed
models (Methods: “Model fitting and selection”).

Detailed syntax and semantics of mixed models

Here we describe the detailed syntax and semantics of the normal linear mixed models combined
with a quasi-log transformation @ of read count ratio as this combination was found to provide the
best fit (Supplementary Fig. 8). We have data on 579 individuals and 30 imprinted genes and so

the response vector is y = (Qiygys s Qisrogr> Qirgar s Qigroges -+ Qirgsos - Qisrogss ). The model in
matrix notation is

y = XB+Zb+e (6)
e KON(0,02), i=1,...,mn (7)
b~ N(0,), (8)

where the size of the covariance matrix 2, depends on the number of terms with random effects
(the columns of Z). Simply put: errors and random coefficients are all normally distributed.

To clarify the semantics of Eq. 6 let us consider a simple toy model with just a few terms in the
linear predictor. But before expressing it in terms of Eq. 6 it is easier to cast it in the compact “R
formalism” of the stats and lme4 packages of the R language as

fixed effect random effects
——
y~ 1+ Age + (1 + Age + Ancestry.1| Gene) + (1| Dx : Gene). 9)
k=1 k=2

First note that the random effect term labeled with ¥ = 1 can be expanded into (1|Gene) +
(Age| Gene) + (Ancestry.1 | Gene). The ‘1’s mean intercept terms: one as a fixed effect and two as
random effects. The first random intercept term (1|Gene) expresses the gene-to-gene variability



in read count ratio (compare panels in Fig. 4 and 5), in other words the random effect of the
Gene variable. The second random intercept term (1|Dx : Gene) corresponds to the interaction
between psychiatric diagnosis Dx and Gene; it can be interpreted as the Gene specific effect of Dx
or—equivalently—as Dx specific gene-to-gene variability. This term is not likely to be informative
as Fig. 4 suggests little Gene specific effect of Dx.

We see that Age appears twice: first as a fixed slope effect on y and second as a Gene spe-
cific random slope effect, denoted as (Age | Gene). The random effect appears to be supported by
Fig. 5 because the dependence of read count ratio on Age varies substantially among genes but
the fixed effect is not supported because the negative dependence seen for several genes is bal-
anced out by the positive dependence seen for others. The model includes another random slope
effect: (Ancestry.1|Gene) with a similar interpretation as (Age | Gene) but lacks a fixed effect of
Ancestry.1.

Now we are ready to write the toy model as an expanded special case of Eq. 6 as

fixed effects random effects

(1) (1) (1) (2)
yi = Bo + Age;f1+by " + Age;by’ + Ancestry.1;b5 + by +&;. (10)
~—
Gene; Dx;:Gene;

As in the earlier R formalism the terms of the linear predictor are grouped into fixed and
random effects. Within the latter group we have two batches of terms indicated by the k super-

scripts on the random regression coefficients b;k). The first batch {b(()l), b(ll), bgl)} corresponds to

{(1| Gene), (Age | Gene), (Ancestry.1 | Gene)} in Eq. 9, the second batch contains only b((f) corre-
sponding to (1 |Dx : Gene).

Within the kth batch Eq. 10 contains only a single intercept coefficient b(()k) and, if random slope
terms are also present in the batch, only a single slope coefficient associated with the variable Age or
Ancestry.1. This is because only a single level of the factor Gene or the composite factor Dx : Gene
needs to be considered for the ith observation; these levels are denoted as Gene; and Dx; : Gene;,
respectively. Implicitly however, Eq. 10 contains the respective coefficients for all levels of these
factors. For example, there are n = 30 intercept coefficients bgl) each of which corresponds to a
given gene. So to generalize Eq. 10 we need Jy, coefficients in the kth batch, where Jj, is the product
of the number of factor levels and one plus the number of random slope variables. This way we can
provide the expansion of the general formula Eq. 6 using the semantics of the toy model (Eq. 9, 10)
as

fixed effects random effects
—
J K Ji
k), (k
Yi = injﬂj +ZZz§j)b§ ) yei. (11)
7=0 k=1 j=0

Model fitting and selection

Eq. 11 describes a large set of mixed models that differ in one or more individual terms that
constitute their linear predictor. From this set we aimed to select the best fitting model under the
Akaike Information Criterion (AIC).

We used a heuristic search strategy in order to restrict the vast model space to a relatively
small subset of plausible models. The search was started at a model whose relatively simple linear
predictor was composed of terms using our prior results based on fixed effects models. The same

10



results suggested a sequence in which further terms were progressively added to the model to test
if they improve fit. Improvement was assessed by AAIC and the y2-test on the degrees of freedom
that correspond the evaluated term. If fit improved the term was added otherwise it was omitted.
Next, further terms were tested. This iterative procedure lead to the following model.

@ ~ RIN+ (1|RNA_ batch) + (1| Institution) 4 (1| Institution : Individual)
+ (1|Gene : Institution) + (1| Gender : Gene)
+ (Age + RIN + Ancestry.1 + Ancestry.3 | Gene)

We refer to this as the “best fitting model” even thought it may represent only a local optimum in
model space.

Data availability

Data and analytical results generated through the CommonMind Consortium are available through
the CommonMind Consortium Knowledge Portal: doi:10.7303/syn2759792. Intermediate results
leading to the final results published here are available from the authors at request.

Code availability

All code developed by A. Gulyas-Kovacs is available at:
https://github.com/attilagk/monoallelic-brain-notebook

The corresponding lab notebook can be browsed as a website at:
https://attilagk.github.io/monoallelic-brain-notebook
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Figure Legends

Figure 1

Quantifying allelic bias of expression in human individuals using the RNA-seq read count ratio
statistic S;4. The strength of bias towards the expression of the maternal (red) or paternal (blue)
allele of a given gene g in individual ¢ is gauged with the count of RNA-seq reads carrying the
reference allele (small closed circles) and the count of reads carrying an alternative allele (open
squares) at all SNPs for which the individual is heterozygous. The allele with the higher read count
tends to match the allele with the higher expression but measurement errors may occasionally revert
this tendency as seen for SNP s3 in gene ¢; in individual 5.

Figure 2

Across-individuals distribution of read count ratio S for each gene indicates substantial variation
of allelic bias and that < 1% of all genes are imprinted. The vertically arranged four main panels
present the empirical distribution of S., across all individuals given each gene g. The upper two
panels are distinct representations (survival plot: 1 — ECDF, and “survival heatmap”) of the same
three distributions corresponding to a: PEG10, b: ZNF331, and ¢: AFAP1. PEG10 and ZNF331,
previously found to be imprinted in mice or in other human tissues, and one for AFAP1, a gene
without prior evidence. The bottom two survival heatmaps present the distribution of S.; for the
top 2% and 100% of the 5307 analyzed genes. These are ranked according to gene score defined as
1—ECDF(0.9) in the bottom far right panels. The score of PEG10, ZNF331, and AFAP1 is marked
by a, b, ¢, respectively, in green circles. As expected, PEG10 and ZNF331 both score high and rank
within the top 30 of all genes suggesting they are also imprinted in the present context, the adult
human DLFPC. The bottom panels also indicate that < 1% of all genes might be imprinted.

Figure 3

The top 50 genes ranked by the gene score defined, for gene g, as 1—F,(0.9), where F}, is the empirical
cumulative distribution function (ECDF) for g. Thus 1 — F,(0.9), is the fraction of individuals ¢
for which S;y > 0.9. Note that the same ranking and score is shown in the bottom half of Fig. 2.
The tan colored bars indicate the fraction of individuals with nearly unbiased expression (Eq. 2).
Gene names (y axis) are colored according to prior imprinting status: known imprinted (blue),
nearby candidate (green), and distant candidate (red). “X” characters next to gene names indicate
mapping bias and/or cis-eQTL effects based on the reference/non-reference allele test (Methods)
while “0” indicates that total allele count was insufficient for this test.

14



Figure 4

Schizophrenia does not affect allelic bias of imprinted genes. Distribution of read count ratio for
Control, schizophrenic (SCZ), and affectic spectrum (AFF) individuals within each gene that has
been considered as imprinted in the DLPFC brain area in this study.

Figure 5

Allelic bias depends differentially on age across imprinted genes. The panels and colors are consistent
with the imprinted genes and psychiatric diagnoses presented in Fig. 4. The differential dependence
on age is apparent when comparing PEG3 or ZNF331 (negative dependence) to KCNK9 or RP13-
487P22.1 (positive dependence) or to NDN or NLRP2 (no dependence).

Tables
Table 1
Hypothesis Results Interpretation
response predictor term AAIC p-value
Q (1] Gene) —126.8 8.5 x 10~2® | imprinted genes vary in allelic bias
Q (1| Dx) 20 1.0 similar allelic bias for Control, SCZ, AFF
Q (1|Dx : Gene) 0.4 0.21 similar gene specific allelic bias for Control, SCZ, AFF
Q Age 1.3 0.39 no uniform effect of Age on allelic bias
Q (Age | Gene) —18.9 2.5x107° | gene specific effect of Age on allelic bias
Q Ancestry.1 0.6 0.24 no uniform genetic effect on allelic bias
Q (Ancestry.1|Gene) | —71.2 4.6 x 10716 | gene specific genetic effect on allelic bias
Q Ancestry.3 1.6 0.54 no uniform genetic effect on allelic bias
Q (Ancestry.3|Gene) | —17.9 3.8 x 107> | gene specific genetic effect on allelic bias
Q (1| Gender) 20 1.0 no uniform Male-Female difference in allelic bias
Q (1] Gender : Gene) —5.7 5.5x 107 | gene specific Male-Female difference in allelic bias
Hypothesis tests concerning the effect of various predictor terms on the quasi log-translformed

read count ratio Q) of imprinted genes, interpreted as effects on allelic bias. Predictor terms whose
effect on ) is modeled as random are enclosed in parentheses. Terms like (1 |Dx) or Age denote
effects that are uniform across imprinted genes, while terms like (1|Dx : Gene) or (Age|Gene)
mean that the effect is specific to certain imprinted gene(s). Strongly negative AAIC and small
p-value indicate significant dependence. Note that the results are based on mixed models that
contained several terms besides the one tested for and shown here in the second column. For details
see Methods: “Statistical models—informal overview”, and beyond.
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